Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Mol Cell Proteomics ; 21(12): 100425, 2022 Oct 12.
Статья в английский | MEDLINE | ID: covidwho-2069471

Реферат

The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus 2019 disease, has led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus-host protein-protein interactions through which SARS-CoV-2 hijacks its human hosts during infection, and to study the role of post-translational modifications. We have reanalyzed public affinity purification-mass spectrometry data using open modification searching to investigate the presence of post-translational modifications in the context of the SARS-CoV-2 virus-host protein-protein interaction network. Based on an over twofold increase in identified spectra, our detected protein interactions show a high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus-host interactions for alternative viruses, as well as previously unknown protein interactions. In addition, we identified several novel modification sites on SARS-CoV-2 proteins that we investigated in relation to their interactions with host proteins. A detailed analysis of relevant modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important hypotheses about the functional role of these modifications during viral infection by SARS-CoV-2.

2.
Molecular & cellular proteomics : MCP ; 2022.
Статья в английский | EuropePMC | ID: covidwho-2057424

Реферат

The outbreak of the SARS-CoV-2 coronavirus, the causative agent of the COVID-19 disease, has led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus–host protein–protein interactions (PPIs) through which SARS-CoV-2 hijacks its human hosts during infection, and to study the role of post-translational modifications (PTMs). We have reanalyzed public affinity purification mass spectrometry data using open modification searching to investigate the presence of PTMs in the context of the SARS-CoV-2 virus–host PPI network. Based on an over two-fold increase in identified spectra, our detected protein interactions show a high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus–host interactions for alternative viruses, as well as previously unknown protein interactions. Additionally, we identified several novel modification sites on SARS-CoV-2 proteins that we investigated in relation to their interactions with host proteins. A detailed analysis of relevant modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important hypotheses about the functional role of these modifications during viral infection by SARS-CoV-2. Graphical

3.
J Proteome Res ; 20(3): 1464-1475, 2021 03 05.
Статья в английский | MEDLINE | ID: covidwho-1091530

Реферат

The SARS-CoV-2 virus is the causative agent of the 2020 pandemic leading to the COVID-19 respiratory disease. With many scientific and humanitarian efforts ongoing to develop diagnostic tests, vaccines, and treatments for COVID-19, and to prevent the spread of SARS-CoV-2, mass spectrometry research, including proteomics, is playing a role in determining the biology of this viral infection. Proteomics studies are starting to lead to an understanding of the roles of viral and host proteins during SARS-CoV-2 infection, their protein-protein interactions, and post-translational modifications. This is beginning to provide insights into potential therapeutic targets or diagnostic strategies that can be used to reduce the long-term burden of the pandemic. However, the extraordinary situation caused by the global pandemic is also highlighting the need to improve mass spectrometry data and workflow sharing. We therefore describe freely available data and computational resources that can facilitate and assist the mass spectrometry-based analysis of SARS-CoV-2. We exemplify this by reanalyzing a virus-host interactome data set to detect protein-protein interactions and identify host proteins that could potentially be used as targets for drug repurposing.


Тема - темы
COVID-19/virology , Information Dissemination/methods , Mass Spectrometry/methods , SARS-CoV-2/chemistry , COVID-19/epidemiology , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Computational Biology , Databases, Protein/statistics & numerical data , Drug Repositioning , Host Microbial Interactions/physiology , Humans , Mass Spectrometry/statistics & numerical data , Pandemics , Protein Interaction Domains and Motifs , Protein Interaction Maps , Protein Processing, Post-Translational , Proteomics/methods , Proteomics/statistics & numerical data , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Viral Proteins/chemistry , Viral Proteins/physiology , COVID-19 Drug Treatment
Критерии поиска